Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Вычисление радиуса: как найти длину окружности зная диаметр». Если у Вас нет времени на чтение или статья не полностью решает Вашу проблему, можете получить онлайн консультацию квалифицированного юриста в форме ниже.
Для простоты объяснения обозначим буквами необходимые для расчета характеристики фигуры. Пусть C – это искомая длина, D – ее диаметр, а число π приблизительно равно 3,14. Если у нас есть всего одна известная величина, то задачу можно считать решенной. Зачем это нужно в жизни? Предположим мы решили обнести круглый бассейн забором. Как вычислить необходимое количество столбиков? И тут на помощь приходит умение, как вычислить длину окружности. Формула выглядит следующим образом: C = π D. В нашем примере диаметр определяется на основе радиуса бассейна и необходимого расстояния до забора. Например, предположим, что наш домашний искусственный водоем составляет 20 метров в ширину, а столбики мы собираемся ставить на десятиметровом расстоянии от него. Диаметр получившейся окружности равен 20 + 10*2 = 40 м. Длина – 3,14*40 = 125,6 метров. Нам понадобятся 25 столбиков, если промежуток между ними будет около 5 м.
Здесь вы найдете ответы.
Каким образом можно вычислить длину окружности при условии, что площадь круга (S) является известной величиной?
Площадь круга (S) рассчитывается путем умножения числа Пи на длину его радиуса (R), возведенную в квадратную степень (S = ПR²). Из указанного равенства можно выразить радиус:
R² = S/ П
Если избавиться от квадратной степени, то получится:
R = √(S/П)
Длина окружности (L) рассчитывается путем умножения числа Пи на длину радиуса, и последующего умножения на два полученного в результате числа:
L = 2ПR
Если R = √(S/П), то L = 2П*√(S/П)
Каким образом можно найти длину окружности, диаметр которой составляет 2 см?
Длина окружности (L) представляет собой число, которое получено в результате умножения числа Пи на диаметр данной окружности:
L = П*D
В конкретном случае:
L = 3,14*2 = 6,28 см.
Ответ: Длина окружности с диаметром 2 см составляет 6,28 см.
Дан квадрат, вокруг которого описана окружность. Ее длина составляет 12 Пи см. Как можно найти длину окружности, вписанной в этот же квадрат?
Известно, что длина окружности (L) рассчитывается путем умножения на два произведения числа Пи и длины ее радиуса (R). Формула выглядит так:
2ПиR
Из данной формулы можно выразить радиус
R = 12пи/2пи = 6 см
Радиус окружности, описанной около квадрата, равен 6 см.
Теперь можно вычислить сторону квадрата, вокруг которого описана данная окружность. Ее длина составляет R корней из 2:
а = 6 корней из 2.
Рассчитываем длину малого радиуса (r), который равен половине длины стороны квадрата:
r = а/2 = 6 корней из 2/2 = 3 корней из 2.
Длина окружности, вписанной в квадрат, рассчитывается по той же формуле:
L = 6 корней из 2 Пи.
Каким образом можно вычислить длину окружности, а также найти ее площадь, при условии, что радиус этой окружности равен 30 см?
Радиус окружности, равный 30 см, обозначается как R.
Площадь окружности можно найти, умножив число Пи на квадрат длины ее радиуса:
S = πR²
Подставим в формулу известные величины:
S = π*30² = 900π см. кв.
Длина окружности обозначается как С и рассчитывается путем умножения на 2 произведения числа Пи и ее радиуса:
C = 2πR
Снова подставляем в формулу величины, которые известны:
C = 2π*30 = 60π см
Ответ: Площадь окружности равна 900π см², а ее длина составляет 60π см.
Дана окружность, в которую вписан правильный треугольник. Его площадь составляет 12√3 см кв. Как можно вычислить длину окружности в данном случае?
По условию задачи известно, что треугольник является правильным, что означает равенство всех его трех сторон. В данном случае его площадь может быть рассчитана по следующей формуле:
S = а^2 * √3 ÷ 4
Зная площадь, мы получаем возможность вычислить длину стороны а. Она будет равна ± √48. Учитывая то, что сторона не может быть отрицательной величиной, можно говорить о том, что сторона а равна √48.
После того как длина стороны стала известна, можно приступить к вычислению площади описанной и вписанной окружности. Для этого не достает еще одного элемента – длины радиуса.
Радиус описанной окружности (R) равен длине стороны треугольника, разделенной на √3:
R = √48 ÷ √3 = 4 см.
Радиус вписанной окружности (r) можно получить, разделив на 2 радиус описанной окружности:
r = 4/2 = 2 см.
Вычисленные длины радиусов вписанной и описанной окружностей позволяют определить ее длину ℓ, которая равна произведению числа Пи и радиуса окружности, умноженному на 2:
ℓ = 2πR
В нашем случае длина описанной окружности рассчитывается как:
ℓ= 2πR = 2π4 = 8π
Длина вписанной окружности будет составлять:
ℓ= 2πR = 2π2 = 4π
Известно, что радиус окружности равен 12 см. Как вычислить ее площадь и длину при Пи=3,14?
В условии задачи говорится о том, что радиус окружности R равен 12 см. Ее длина может быть вычислена посредством умножения на 2 произведения длины радиуса и числа Пи:
C=2πR
Известно, что число Пи – это константа, равная 3,14. Тогда длина окружности (С)высчитывается следующим образом:
C=2*3*12=72 см
Площадь окружности можно найти, умножив число Пи на длину ее радиуса, возведенную в квадратную степень:
S=πR²=3,14*12²=3,14*144=452,16 см кв.
Как можно вычислить радиус окружности и ее диаметр, если известно, что ее длина составляет 20 Пи см?
По условию задачи длина окружности ра��на 20 Пи см. Зная формулу, по которой вычисляется длина окружности, можно записать следующее равенство:
2Пи = 2ПиR
Можно сократить Пи в обеих частях записанного равенства, в результате чего получится, что:
2R = 20
Теперь высчитаем, чему равна длина радиуса окружности:
R = 20/2 = 10 см.
Длина диаметра равна длине радиуса, умноженной на 2:
D = R*2 = 10*2 = 20 cм.
Длина дуги окружности составляет 6Пи см, при этом ее градусная мера равна 120 градусов. Каким образом можно вычислить радиус окружности?
Полная градусная мера любой окружности равна 360 градусов. В случае, описанном в задании, градусная мера окружности составляет 120 градусов, что равно 1/3 части 360 градусов. Это позволяет сделать вывод о том, что длина окружности (L) может быть рассчитана следующим образом:
L = 6Пи * 3 = 18Пи
Формула, по которой вычисляется длина окружности, выглядит так:
L =2пR
Из данной формулы можно выразить радиус (R):
R = L/2Пи
В заданном случае длина радиуса будет равна:
18Пи/2Пи = 9 см.
Как на радиус окружности повлияет увеличение ее длины на 9,42 см?
Обозначим прежнюю длину окружности как L, а новую – как L₁. Тогда можно записать следующее равенство:
L₁ — L = 9,42 см
Прежний радиус окружности примем за R, а новый ее радиус, который получится в результате увеличения длины, обозначим как R₁. Для того чтобы вычислить ее значение, следует сначала записать формулу, по которой вычисляется прежняя длина данной окружности:
L = 2πR
Тогда формула для вычисления новой длины окружности будет иметь такой вид:
L + 9,42 = 2πR₁
Отнимем от новой длины старую, и в итоге получим:
2πR₁ — 2πR = 9,42 см.
Перенесем 2Пи из левой части равенства в правую:
R₁ — R = 9,42 : 2π = 1,5 см.
Калькуляторы по геометрии
Математические калькуляторы
Периметры фигур. Периметр круга. Длина окружности.
Радиус и диаметр окружности
Окружность — это фигура в геометрии, которая состоит
из множества точек, расположенных на одинаковом
расстоянии от заданной точки (центра окружности).
Радиус окружности — это отрезок, который соединяет
центр окружности с какой-либо точкой окружности.
Диаметр окружности — это отрезок, который соединяет
две любые точки окружности, причем сам отрезок
должен проходить через центр окружности
Eсли от центра окружности провести
отрезки ко всем точкам окружности, то они будут иметь
одинаковую длину, то есть равны. В математике
такие отрезки называют радиусами.
Все радиусы окружности, как и диаметры окружности,
равны между собой, имеют одинаковую длину.
Кроме достаточно простого описательного определения существуют еще три математических характеристики окружности, которые уже сами по себе содержат ответ на вопрос, как найти длину окружности:
- Состоит из точек A и B и всех других, из которых AB можно увидеть под прямым углом. Диаметр данной фигуры равен длине рассматриваемого отрезка.
- Включает исключительно такие точки X, что отношение AX/BX неизменно и не равно единице. Если это условие не соблюдается, то это не окружность.
- Состоит из точек, для каждой из которых выполняется следующее равенство: сумма квадратов расстояний до двух других — это заданная величина, которая всегда больше половине длины отрезка между ними.
Как найти длину окружности по диаметру
Для простоты объяснения обозначим буквами необходимые для расчета характеристики фигуры. Пусть C — это искомая длина, D — ее диаметр, а число π приблизительно равно 3,14. Если у нас есть всего одна известная величина, то задачу можно считать решенной. Зачем это нужно в жизни? Предположим мы решили обнести круглый бассейн забором. Как вычислить необходимое количество столбиков? И тут на помощь приходит умение, как вычислить длину окружности. Формула выглядит следующим образом: C = π D. В нашем примере диаметр определяется на основе радиуса бассейна и необходимого расстояния до забора. Например, предположим, что наш домашний искусственный водоем составляет 20 метров в ширину, а столбики мы собираемся ставить на десятиметровом расстоянии от него. Диаметр получившейся окружности равен 20 + 10*2 = 40 м. Длина — 3,14*40 = 125,6 метров. Нам понадобятся 25 столбиков, если промежуток между ними будет около 5 м.
Информация по назначению калькулятора
В евклидовой геометрии круг — это множество всех точек на плоскости на фиксированном расстоянии, называемом радиусом, от заданной точки, центра. Длина круга называется его окружностью, а любая непрерывная часть окружности называется дугой.
Окружность — это простая замкнутая кривая, которая делит плоскость на внутреннюю и внешнюю. Внутренняя часть круга называется диском. Математически круг можно понимать и несколькими другими способами. Например, это частный случай эллипса, в котором два фокуса совпадают (то есть они являются одной и той же точкой). Альтернативно, окружность можно рассматривать как коническое сечение, достигаемое, когда прямой круговой конус пересекается плоскостью, перпендикулярной оси конуса.
Число π (ПИ) равно 3,141 592 653 589 793 238 462 643 383 279 502 884 197 169 399 375…
Все круги обладают одинаковыми свойствами. Некоторые из них отмечены далее:
⇒ Для любого круга заключенная площадь и квадрат его радиуса находятся в фиксированной пропорции, равной математической константе π (ПИ).
⇒ Для любого круга длина окружности и радиус находятся в фиксированной пропорции, равной 2π.
⇒ Круг — это фигура с наибольшей площадью для заданной длины периметра.
⇒ Круг имеет очень симметричную форму. Каждая линия, проходящая через центр, образует линию симметрии отражения. Кроме того, существует вращательная симметрия вокруг центра для каждого угла.
⇒ Окружность с центром в начале координат радиусом 1 называется единичной окружностью.
Основные свойства касательных к окружности
1. Касательная всегда перпендикулярна к радиусу окружности, проведенного в точке соприкосновения.
2. Кратчайшее расстояние от центра окружности к касательной равна радиусу окружности.
3. Если две касательные, с точками соприкосновения B и C, на одной окружности не параллельны, то они пересекаются в точке A, а отрезок между точкой соприкосновения и точкой пересечения одной касательной равен таком же отрезке на другой касательной:
AB = AC
Также, если провести прямую через центр окружности О и точку пересечения A этих касательных, то углы образованный между этой прямой и касательными будут равны:
∠ОAС = ∠OAB